1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//! Types and functions for 2D rendering

use ::{cgmath};

use ::{graphics};

/// Represents a camera ("view") positioned and oriented in a 2D scene with a
/// 2D transformation and a 2D projection
pub struct Camera2d {
  // transform
  /// Position in 2D world space
  pub position                    : cgmath::Point2  <f32>,
  /// Yaw represents a counter-clockwise rotation restricted to the range $[0,
  /// 2\pi)$.
  pub yaw                         : cgmath::Rad     <f32>,
  /// Basis derived from `yaw`.
  pub orientation                 : cgmath::Basis2  <f32>,
  /// Transforms points from 2D world space to 2D camera (view, eye) space as
  /// specified by the camera position and orientation.
  pub transform_mat_world_to_view : cgmath::Matrix4 <f32>,

  // projection
  pub viewport_width              : u16,
  pub viewport_height             : u16,
  /// Determines the extent of the view represented in the `ortho` structure
  pub zoom                        : f32,
  /// Used to create the ortho projection matrix
  pub ortho                       : cgmath::Ortho <f32>,
  /// Constructed from the parameters in `ortho` to transform points in 2D view
  /// space to 4D homogenous clip coordinates.
  pub projection_mat_ortho        : cgmath::Matrix4 <f32>
}

impl Camera2d {
  /// Create a new camera centered at the origin looking down the positive Y
  /// axis with 'up' vector aligned with the Z axis.
  ///
  /// The orthographic projection is defined such that at the initial zoom
  /// level of 1.0, one unit in world space is one *pixel*, so the points in
  /// the bounding rectangle defined by minimum point `(-half_screen_width+1,
  /// -half_screen_height+1)` and maximum point `(half_screen_width,
  /// half_screen_height)` are visible.
  pub fn new (viewport_width : u16, viewport_height : u16) -> Self {
    use cgmath::{One, EuclideanSpace};

    // transform: world space -> view space
    let position    = cgmath::Point2::origin();
    let yaw         = cgmath::Rad (0.0);
    let orientation = cgmath::Basis2::one();
    let transform_mat_world_to_view
      = transform_mat_world_to_view (&position, &orientation);

    // projection: view space -> clip space
    let zoom        = 1.0;
    let ortho       = Self::ortho_from_viewport_zoom (
      viewport_width, viewport_height, zoom);
    let projection_mat_ortho = graphics::projection_mat_orthographic (&ortho);

    Camera2d {
      position,
      yaw,
      orientation,
      transform_mat_world_to_view,
      viewport_width,
      viewport_height,
      zoom,
      ortho,
      projection_mat_ortho
    }
  }

  /// Should be called when the screen resolution changes to update the
  /// orthographic projection state.
  ///
  /// # Panics
  ///
  /// Panics if the viewport width or height are zero:
  ///
  /// ```should_panic
  /// # extern crate gl_utils;
  /// # extern crate cgmath;
  /// # fn main () {
  /// # use gl_utils::Camera2d;
  /// use cgmath::{EuclideanSpace, One, Transform};
  /// let mut camera2d = Camera2d::new (320, 240);
  /// camera2d.set_viewport_dimensions (0, 0); // panics
  /// # }
  /// ```
  pub fn set_viewport_dimensions (&mut self,
    viewport_width : u16, viewport_height : u16
  ) {
    assert!(0 < viewport_width);
    assert!(0 < viewport_height);
    self.viewport_width  = viewport_width;
    self.viewport_height = viewport_height;
    self.compute_ortho();
  }

  /// Set the zoom level.
  ///
  /// # Panics
  ///
  /// Panics if scale factor is zero or negative:
  ///
  /// ```should_panic
  /// # extern crate gl_utils;
  /// # extern crate cgmath;
  /// # fn main () {
  /// # use gl_utils::Camera2d;
  /// use cgmath::{EuclideanSpace, One, Transform};
  /// let mut camera2d = Camera2d::new (320, 240);
  /// camera2d.set_zoom (-1.0);   // panics
  /// # }
  /// ```
  pub fn set_zoom (&mut self, zoom : f32) {
    assert!(0.0 < zoom);
    if self.zoom != zoom {
      self.zoom = zoom;
      self.compute_ortho();
    }
  }

  pub fn rotate (&mut self, delta_yaw : cgmath::Rad <f32>) {
    use std::f32::consts::PI;
    use cgmath::Zero;
    if !delta_yaw.is_zero() {
      self.yaw += delta_yaw;
      if self.yaw < cgmath::Rad (0.0) {
        self.yaw += cgmath::Rad (2.0*PI);
      }
      if cgmath::Rad (2.0*PI) <= self.yaw {
        self.yaw -= cgmath::Rad (2.0*PI);
      }
      self.compute_orientation();
    }
  }

  /// Move by delta X and Y values in local coordinates
  pub fn move_local (&mut self, delta_x : f32, delta_y : f32) {
    self.position += (delta_x * self.orientation.as_ref().x)
        + (delta_y * self.orientation.as_ref().y);
    self.compute_transform();
  }

  /// Multiply the current zoom by the given scale factor.
  ///
  /// # Panics
  ///
  /// Panics if scale factor is zero or negative:
  ///
  /// ```should_panic
  /// # extern crate gl_utils;
  /// # extern crate cgmath;
  /// # fn main () {
  /// # use gl_utils::Camera2d;
  /// use cgmath::{EuclideanSpace, One, Transform};
  /// let mut camera2d = Camera2d::new (320, 240);
  /// camera2d.scale_zoom (-1.0);   // panics
  /// # }
  /// ```
  pub fn scale_zoom (&mut self, scale : f32) {
    assert!(0.0 < scale);
    self.zoom *= scale;
    self.compute_ortho();
  }

  /// Returns the raw *world to view transform* and *ortho projection* matrix
  /// data, suitable for use as shader uniforms.
  #[inline]
  pub fn view_ortho_mats (&self) -> (&[[f32; 4]; 4], &[[f32; 4]; 4]) {
    (
      self.transform_mat_world_to_view.as_ref(),
      self.projection_mat_ortho.as_ref()
    )
  }

  #[inline]
  fn compute_orientation (&mut self) {
    use cgmath::Rotation2;
    self.orientation = cgmath::Basis2::from_angle (self.yaw);
    self.compute_transform();
  }
  #[inline]
  fn compute_transform (&mut self) {
    self.transform_mat_world_to_view
      = transform_mat_world_to_view (&self.position, &self.orientation);
  }
  /// Recomputes the ortho structure based on current viewport and zoom.
  fn compute_ortho (&mut self) {
    self.ortho = Self::ortho_from_viewport_zoom (
      self.viewport_width, self.viewport_height, self.zoom);
    self.compute_projection();
  }
  #[inline]
  fn compute_projection (&mut self) {
    self.projection_mat_ortho
      = graphics::projection_mat_orthographic (&self.ortho);
  }

  /// Rounds the viewport to the next lower even resolution which will
  /// cause 1px distortion but prevent mis-sampling of 2D textures at
  /// non-power-of-two zoom levels
  fn ortho_from_viewport_zoom (
    viewport_width : u16, viewport_height : u16, zoom : f32
  ) -> cgmath::Ortho <f32> {
    let half_scaled_width  = 0.5 * (
      (viewport_width  - viewport_width  % 2) as f32 / zoom);
    let half_scaled_height = 0.5 * (
      (viewport_height - viewport_height % 2) as f32 / zoom);
    cgmath::Ortho {
      left:   -half_scaled_width,
      right:   half_scaled_width,
      bottom: -half_scaled_height,
      top:     half_scaled_height,
      near:   -1.0,
      far:    1.0
    }
  }
}

/// Builds a 4x4 transformation matrix that will transform points in world
/// space coordinates to view space coordinates based on the current 2D view
/// position and orientation.
///
/// The Z coordinate of the position is always `0.0` and the view is always
/// looking down the negative Z axis.
// TODO: doctest ?
pub fn transform_mat_world_to_view (
  view_position    : &cgmath::Point2 <f32>,
  view_orientation : &cgmath::Basis2 <f32>
) -> cgmath::Matrix4 <f32> {
  let eye    = cgmath::Point3::new (view_position.x, view_position.y, 0.0);
  let center = eye - cgmath::Vector3::unit_z();
  let up     = view_orientation.as_ref().y.extend (0.0);
  cgmath::Matrix4::<f32>::look_at (eye, center, up)
}

/// Maps OpenGL NDC coordinates to screen coordinates based on a given screen
/// resolution.
///
/// # Examples
///
/// ```
/// # extern crate gl_utils;
/// # extern crate cgmath;
/// # fn main () {
/// # use gl_utils::camera2d::ndc_2d_to_screen_2d;
/// assert_eq!(
///   ndc_2d_to_screen_2d (cgmath::vec2 (640, 480), (0.0, 0.0).into()),
///   (320, 240).into()
/// );
/// assert_eq!(
///   ndc_2d_to_screen_2d (cgmath::vec2 (640, 480), (0.5, 0.1).into()),
///   (480, 264).into()
/// );
/// assert_eq!(
///   ndc_2d_to_screen_2d (cgmath::vec2 (640, 480), (-1.0, -1.0).into()),
///   (0, 0).into()
/// );
/// assert_eq!(
///   ndc_2d_to_screen_2d (cgmath::vec2 (640, 480), (-1.0, 1.0).into()),
///   (0, 480).into()
/// );
/// assert_eq!(
///   ndc_2d_to_screen_2d (cgmath::vec2 (640, 480), (1.0, -1.0).into()),
///   (640, 0).into()
/// );
/// assert_eq!(
///   ndc_2d_to_screen_2d (cgmath::vec2 (640, 480), (1.0, 1.0).into()),
///   (640, 480).into()
/// );
/// # }
/// ```

pub fn ndc_2d_to_screen_2d (
  screen_dimensions : cgmath::Vector2 <u16>,
  ndc_coord         : cgmath::Point2 <f32>
) -> cgmath::Point2 <i16> {
  cgmath::Point2::new (
    (0.5 * (screen_dimensions.x as f32) * (1.0 + ndc_coord.x)) as i16,
    (0.5 * (screen_dimensions.y as f32) * (1.0 + ndc_coord.y)) as i16)
}

/// Convert screen coordinate to OpenGL NDC based on a given screen resolution.
///
/// # Examples
///
/// ```
/// # extern crate gl_utils;
/// # #[macro_use] extern crate cgmath;
/// # fn main () {
/// # use gl_utils::camera2d::screen_2d_to_ndc_2d;
/// assert_eq!(
///   screen_2d_to_ndc_2d (cgmath::vec2 (640, 480), (320, 240).into()),
///   (0.0, 0.0).into()
/// );
/// assert_relative_eq!(
///   screen_2d_to_ndc_2d (cgmath::vec2 (640, 480), (480, 264).into()),
///   (0.5, 0.1).into()
/// );
/// assert_eq!(
///   screen_2d_to_ndc_2d (cgmath::vec2 (640, 480), (0, 0).into()),
///   (-1.0, -1.0).into()
/// );
/// assert_eq!(
///   screen_2d_to_ndc_2d (cgmath::vec2 (640, 480), (0, 480).into()),
///   (-1.0, 1.0).into()
/// );
/// assert_eq!(
///   screen_2d_to_ndc_2d (cgmath::vec2 (640, 480), (640, 0).into()),
///   (1.0, -1.0).into()
/// );
/// assert_eq!(
///   screen_2d_to_ndc_2d (cgmath::vec2 (640, 480), (640, 480).into()),
///   (1.0, 1.0).into()
/// );
/// # }
/// ```

pub fn screen_2d_to_ndc_2d (
  screen_dimensions : cgmath::Vector2 <u16>,
  screen_coord      : cgmath::Point2 <i16>
) -> cgmath::Point2 <f32> {
  cgmath::Point2::new (
    screen_coord.x as f32 / (0.5 * screen_dimensions.x as f32) - 1.0,
    screen_coord.y as f32 / (0.5 * screen_dimensions.y as f32) - 1.0
  )
}